
TOTAL ENGINEERING SERVICES TEAM INC.

RTU/SCADA SOFTWARE

SYSTEM SETUP AND PROGRAMMING GUIDE

Aug 19, 1991

Document Number 1030-01

P.O. Drawer 1760
671 Whitney Ave.

Gretna, La. 70054
(504) 368-6792

This document is rei copyriglJt 1991 by
Total Engineering Services Team, Inc., Gretna, La. USA.

All rights are reserved.

TOTAL ENGINEERING SERVICES TEAM 08/19/97
/iTUISCAOA System Documentation Page t

TOTAL ENGINEERING SERVICES TEAM INC.

RTU/SCADA SOFTWARE

SYSTEM SETUP AND PROGRAMMING GUIDE

INTRODUCTION

This document presents programming guidelines for TEST's SCADA
systems. The purpose is to provide a common method of setting up and executing
typical procedures so that all systems will have similar operational patterns,
Although many of the procedures presented here could be done many ways,
campllanGe with these guidelines will result in an easier to maintain system
because the system will be similar to most other units,

Users supporting their own systems do not have to comply with these
guidelines if they choose to develop their own methods. However, all systems
supported by TEST will be designed with these concepts in mind. Existing systems
will be modified as needed to bring them in line with these policies.

This document assumes some knowledge of SCADA systems in general, and
TEST's system in particular. Detailed information on tt1e commands and
procedures mentioned can be found in the SYSTEM DESIGN CONCEPTS and
COMMAND REFERENCE documents,

SYSTEM DESIGN

The TEST SCADA system is a Personal Computer (PC) based telemetry
system that can be used for a variety of remote data gathering and control
purposes. There are several levels ot setup and programming reQuired to tailor the
system for each location. The many options available often interact with one
another, so a complete understanding of the system requirements must be defined
so that these options can be set correctly. Some options relate to system
configuration, others relate to I/O point definition, and others relate to proced ure
programming. Each of these topics will be covered in this document to iliustrBte
standard methods of building a system.

STYLE, COMMENTS, AND UPPER/LOWER CASE

Although a subject like "upper and lower case" is not the most important
thing about programming the SCADA system. it is being mentioned up tront
because it reflects the overall tone of this discussion on programming style, After
ali, the program almost never cares about upper and lower case as eittler will work
in most instances. Well. there is a lot more to learn about setting up a SCADA
system than simple typing style.

There are many ways to set up a system, many of which will do the job,
Our goal here it to do more than just the minimum job, but rather to provide an

T07AL ENGINEERING SERVICES TEAM
8 TtJt/jiCA Qd. SYstem Dqcumen (arion

08/19191
Pagld.

S~$(em Setu{) fJodPrafl{ommifl(l Guidi!

easlly maintained system that is consistent with many other systems. The reason
for this is more than mere esthetics. One clear mark of a professional programmer
is that the programs he creates are neat, clearly understood, and easily followed.
A "hacker" will whip up some quickie that will do the job, but it will not be
understood by anyone, including the original programmer, in just a short time,

Consider these examples taken from actual installations that show various
methods of performing a remote unit shut·down:

BAD EXAMPLE
PROC sx
sele ec:5l0

diat

W""it 30 conn
set online .on

blaCK caic t1 ¢ 30

bye

BETTER EXAMPLE
PROt shut~in ; Proc to cal! rC320 and ~Jlse shutin output

sele ec320

di.l
msg Waiting for cennect
wait com 30
set oot ine OIl

msg RIU is ont inc. Send;n!} Pllls~ c;:oilmand
block Gale t4 ;;;; 30

sleep 30

block read download

BEST EXAMPLE
PROC Pl1ise~Timer PrQc tQ pulse any output timer. Porum 1

: is the RTU, Param 2 ;s timer, 3 is sees .
•• 1. $1
'1S9 Calling RTU $R to pul •• $2 for S3 Second ••

dIal

wait 30 com
if ~~Ut(i)

fflSg R1'U 1S (ml ine, Sending Putse COiIl'Iland.

el$t}"

msg RW did not connect. Retry later.

endif

set onLine on
blnck catc $24 $3

M$g Steeping for ~3 seconds to allow timer to comptete
sleep $3 i Give RTU time to react
Ksg Getting an RTU download
btock download ; Transfer control t~ the RTU

The first example will work, but has some limitations and uses some poor
practices. First of all, there are no comments associated with the procedure. Tho

TOTAL ENGINEERING SERVICES TEAM
RTU/SG"ADA System PqcIJml1at8tjQO

08119191
. ~~,,_.~~J'(J!l(L2

procedure name, SX, means nothing to everyone except the original author. The
destination RTU, timer, and number of seconds are all "hard coded" into the
program, and can only be used for that one purpose. Also, there are no status
messages sent to the console that tell the operator the status of the procedure.

The second example is a lot better because it uses a meaningful procedure
name, "shutJn". This will tell any follow-up programmer that this proc is about
shutting something in. The proc has a few comments to explain its operation, and
sends a few status messages to the console. However, this example is still
restricted to a single location and timer channel.

The last example is a reusable "generic" procedure that can be used to call
any RTU, and pulse any timer for any number of seconds. This is done witl1 tl'le
USe of command line parameters that will appear on the line when the procedure is
called. An example would be:

The three parameters are "VR453", "T4", and "30", and they correspond to
$1, $2, and $3. The program will pass these parameters to the procedure at run
time, and will substitute ttle "$" references with the corresponding parameter.
This makes the generic procedure into a specific procedure at the time it is
tlxecuted. One procedure can be used for many purposes, which makes the
programs smaller and much easier to maintain.

The last example also makes good use of Upper and lower case to make user
defined words stand out. Procedures that are stored in the Procedure Library are
not restricted to names with only 8 characters, so the longer "Pulse_Timer" name
is not only legal but it is very descriptive.

These examples show all of the "style" issues that should be considered
when writing SCADA programs. Obviously, it takes more original effort to do the
"best" example rather than the first one. It takes more thought, and a bit more
typing. However, the third example can be used a number of times, and is much
easier to work with. In the end, a lot of time can be saved by the original
programmer as well as any later ones when working with the more detailed
example.

TOTAL ENGINEERING SERVICES TEAM
BTU/SCAQA Sv*~m~Q~o~cwum~QnwtQ8WUO~nL-____________________________ ~,

08119191
Pllge 3

SYSTEM CONFIGURATION
\

The SCAD A software is a complex multi"tasking program that runs under the J
DOS operating system on any type of IBM compatible PC computer. The program
must be configured for each location so that the proper computer resources will be
allocated in a manner that best fits the situation. For example, the number of tasks
[eq~,ired for each system must be defined in an overall system setup file which is
processed one time as the program initially loads. This file will tell the program
how many tasks, their type, and how much CPU time and memory to allocate for
each one. Although the setup is similar from one location to another, slight
variatJons are required to suit the number of comm ports, local I/O drivers, and
background calculation requirements.

The text file containing this configuration information is referred to as the
main "OAT" file because the DOS file type defaults to n .DAT". The default file
name is "RTU.DAT" and will be used if no other name is specified. However, the
flame of the file should reflect the location's identity, such as "VR167.DAT" or
"MP36.DAT". The name is arbitrary, but should be selected with some care and
should retain the" . OAT" filetype. This file will be the first thing processed after
the program starts execution because it must do all of the memory allocation prior
to loading any other system information. Any changes made to this file will require
that the systflm is reloaded so that the file can be processed again. The file to use
is specified on tt19 DOS command line that starts the program with the /F
command line parameter as in:

RTUMON IF~VR167. DA'l'

The file name can contain any valid DOS path as wall as the file name so
that the configuration file can be on a different disk or directory than the main
[Hogram. This is often done in ROM or RAM disk systems where the various
system components are located on different logical devices.

The easiest way to build a new config file is to take an existing one and
modify it. Modifications are made by simply typing over the existing text, or
adding and deleting existing text. It Is a god idea to "comment out" text that is
not needed so that it will reman in the file as a reminder of an un~used option.
Commenting is done with a semi"colon I;} character anywhere on the line, including
at the first pOSition. A comment character at the start of the line effectively
deletes the line because it will not be processed. However, the line remains in the
file and will be seen when the file is edited or printed as a note that a particular
function was changed or disabled. Consider the following sample file:

password Off

COM 1 1200 PHON. N 8 4 200 400
task,I'tlJ,C(Jffi1 Phone, , 1

task t ut H, \1t il Hy RTU • J.
tas\(.Catc.Calc-ulatw·, • 3

tDsk,SCAN, Alarm Scan. ,4
task,driverl ,32
tasK,Sc;c, One Second

df'iv~r metrabus cc311.mb ; Request local 1/0 driver

TOTAL ENGINEERING SERVICES TEAM
BI.lJLJiCA DA System DocumOOffition

08119191
PfiQIUl

http:cc311.mb

liNKS 6

VARIABLE. 8
Mme, EC311, Ene tH>311~AJ R,TU j C~lete tn@ System name

rtu, EC311. Eoe Ec-311-AJ R1U,1
status 16

output a
aln 16

timer- 1D
vatue 16
counter- 2
ag03 3 ; need one fQr the faked meter
total 2

Tilis example file contains an sample of every type of configuration line
available. It is unusual to need all of the Jines at every location, but it is possible.
The syntax and purpose of these lines are detailed in tile system design
documentation, and will not be explained Ilere.

TASK DEFINITION

"[ask 0 is always the local user, and is automatically defined by the system
at load time. Tile user has limited control over this task as its memory allocation is
determined by the program itself. However, the task manager settings can always
be changed during program execution with the TASK command so that the task
priority, delay, and other runtime setting can be manipulated.

Task 1 should always be the primary communications task for that system,
or it should be the RADIO comm task if the system supports more than one comm
channel. What this means is that systems with only a radio or phone should put
the comm task as task 1, which will use COM1 as the serial port. If the system
has both phone and radio, then put the RADIO on task 1 and the phone on Task 2.
There is no technical reason for this, but it is a recommended practice to keep most
systems the same.

Define the comm tasks one after another, and then define a UTILITY task
that is needed at most systems. This is very similar to a comm task, but it
receives its input via inter-task messages rather than from a comm port. Many
system function require the presence of a UTIL taSk, so always put one unless
there is a good reason to do otherwise. There should be only one UTiL task
defined to avoid confusion.

After the UTIL task, we can define a CALCULATOR task that is very similar.
The tasks are set up exactly the same, and differ only in their intended purpose.
The UTIL task will process dynamiC activities that can corne at any time, and
execute quickly. An example would be the processing of a report request or a daily
log-off activity. The procedure runs once, after which the UTIL task is free to
eXecute another procedure. The CALC task is normally used to process a
continuous calculation procedure that runs and then repeats in an endless loop.

TOrAL ENGINEERING SERVICES TEAM
B.r1JLSs::.dQ~!t[!J.J)oSlIJ!Il",e"-,n.."tacutl,,,,'Qn,,--_____ _

08119191
~"""", 1~§Jl e fi

SY!item Setuo and Prgrzrammino Guide

Once started, the CALC task is not available to process anything else because it is
stuck in the loop. The CALC task is used for background calculations like tank
levels, flow total math, or other constant requirements. This is not the same as)
TOTALIZER or AGA3 channels which are done automatically by the system.
Rather, this is for user defined calculations such as figuring tank volume from a DP
cell input, or adding several tank volumes together to produce a total into a value
channel.

After the CALC task, which will be the last command processing type task,
the 1/0 Driver and Alarm Scanning tasks must be defined. The 110 driver task is
only needed of the system will have any local 110. This would include any
MetraBus, Generic, or Relay driver systems. Definition of the Driver Task will
require later definition of the Drivers to be loaded and also the file names of the
driver control files. Definition of the Driver Task simply allocates memory space for
the task and puts it in the Task poll at the place where it was defined.

The Scanner task will constantly look at all channels and check for out-of­
tolerance conditions and other alarm status changes. It also does the AGA3
calculations on each pass. The processor time needed for this task depends on the
number of channels. and should be a higher priority for an RTU than a HOST. This
is because a real RTU has data that is constantly changing, while a Host generally
gets new data infrequently as a result of an RTU poll. So, wasting CPU time
checking channels that rarely change results in a slower system than would
otherwise be available.

The next task is the One Second task, which is a special task in terms of its
priority. This task is not part of the normal task scheduling, and therefore must be
the last one defined. It gets a chance to run once each second, and takes priority
over other tasks at that instant. The task runs to completion, and the system then
returns to whatever task was interrupted. The One Sec task handles timers,
totalizers, and other system time related functions. It is given a high priority in
terms of its system tick allocation so that it can always run to completion.

That is all that is needed to set up the tasks. The system will automatically
allocate another task called the IDLE task as the very last one on the list. This task
is necessary for the multi-tasker as it needs a place to go at times when no other
task is ready to run. You do not need to define it, but it will show up in the task
list of all STATUS displays after the system is up and running.

After defining the tasks, supplemental information is needed to further
configure the system. Place any DRIVER statements just after the last task
definition to inform the program which 1/0 devices will be needed at this location.
The Driver statement tells which type of 1/0 (Metra bus, Generic, etc.) is being
used, and also specifies the file name that should be used by the driver startup.
This is a separate file from the one being considered here, and it will be processed
much later in the startup process. There is a separate file for each driver type, and
it tells the 1/0 driver the number of points and other driver specific information.
Just keep in mind that all we do here is inform the system that the driver will be
needed, and tell it where to find the driver configuration information when it needs
it.

After all of the tasks and drivers are set up, we need to define the logical
RTl) systems at this location. An RTU is just a collection of 1/0 points, and there

TOTAL ENGINEERING SERVICES TEAM
RTL(ISCADA System QQcumenratign

08//9/91
Page 6

can be many logical RTUs on a single system. Internally, the system will have a
long list for each channel type. This list will contain all the information about the
channels available at that computer. The list is subdivided into logical RTUs that
represHnt a grouping of some sort, normally based on physical location. So, each
RTU needs to be defined so that the system knows its name and local or remote
status. After starting an RTU definition, we must specify the number of points for
each channel type that will be used for this RTU. With this intormatlon, the
program can build the overall point list for each channel type, and will know thH
start and end position for each RTU.

Eac:h RTU definition will have a similar section, with the names and channel
points being different. Each RTU does not have to have every availablH channHI
type. If there are no instances of a particular channel type, then it does not need
to be mentioned. However, it is better to "comment out" the channel definition
rather than delete it so that It is clear that no channels of that type are being
defined for that RTU.

TASK 0 STARTUP FILE

After the system reads in all of the c:onfiguratlon files, i1 is ready to kick off
the rnulti~tasklng operating system built into the program. This is a very complux
activity because the relationships among the tasks will vary from one system to
another. However, there is some consistency In all systems so that they can
follow this general startup guide.

The only thing automatically done by the program is that it makes the local
task, TASK 0, ready to run and begins running it from the top. One consequence
of starting any RTU type task (but not a Driver or other task) is that the task is
instructed to read a file called "STARTx.RTU", where the x is replaced with tl1e
task's number. So, task 0 will begin execution with the message "READ STARTO"
in its in~basket (so to speak!). So, the first thing task 0 will do is begin processing
commands in STARTO, which will be the main kick~off for all other processes. No
other task starts automatically, so it is up to task 0, by reading STARTO, to get
everything else going in the proper sequence.

The SmRTO,BTU fila must be a real DDS tile and not a library function
because the library has not been loaded yet. The only way to load it is with
STARTO, so we have a chicken-and-egg problem. As a way of standardizing the
overall startup process, the following generic STARTO file can be used to load a
library and then branch to the rest of the starting operation:

; Genuric STARTO"R1U DOS file that gets it all going
library load $5.119

i SnufCh to the-- rest of thl't' rea l startup process

With this method, the bulk of the real STARTO operation would bH contained
in the library procedure called STARTUP. This way, STARTO can be a small.
simple DDS file that is the same for all locations, and the real STARTUP process
Gan be embedded within the library. The end result is the same in that the
computer must process the list of initialization commands normally associated with

TOlA! ENGINEERING SERVICES TEAM
{fT/j/SCADA Svsoom Documentation

08/19/91
-EM,7

the STARTO function. The change here is that the actual commands are placed in
another procedure, called STARTUP, that Is placed In the library. This is an
important concept, and will be mentioned again later on.

This task 0 startup sequence is fairly standardLc:ed In concept, althOugh the
actual command lines will change to suit the location. The basic steps are as
follows:

1. Read in the RTU configuration files 10r all RTUs assigned to this system,
This should be done via GOSUB commands to each RTU. so they will be
loaded right then one after another. A typical sequencfl is as follows:

Go.ub Vrl67 ; lQad In RfU 1
gUliiuh Vf.!:162

gosub WC240

This sequence would cause processing to branCfl to files called VR167.RTU.
VR162.RTU, and WC240,RTU. These should be normal RTU files that
should not be placed in the procedure library. This is because we want to
dynamically change these files, and placing them in the library prevents this,

2. The next step is to load the Gomm link date that is stored in a file ending in
".L1N". This file is created every time a LINK SAVE is executed, and the
name of the file is the same as the system name (determined in the main
OAT file at load time). This name is available as a system parameter with
$S, so It is possible to instruct the system to load the link file without even
knowing its name. This is done as follows:

The $S will be replaced with the name of the system when the line is
processed, so always do it this way and you will never have a problem. The
only reason not to do this would be on a system with multiple link setting
saved in separate files. These files would have user determined names
rather than the system name, so it would be necessary to indicate the exact
name on the gosub line. This Is rare, so keep it simple and use the $S
specification.

3. Load the desired agenda activities from a file called AGENDA,RTU. This is <l

special command file. and is read like any other command file with a GOSUB
command, So, a typical line would be:

Gosub agenda ; rea.d in the d'Ji t y act i vi ty list

4. Next. we can load in the "image" file that is generated automatically by the
system every now and then, This file contains all sorts of dynamic setting
related to alarm status, point values, and other system internals. Loading
the image basically restores the system to the state it state it was in when
the image file was last saved, On some systems. this is done every few
seconds, so the value of timers, counters, totalizers, link states, and other

TOTAL ENGINEERING SERVICES TEAM
EJ.IJJL:iCADA Svsrnm Dpclfmentlltion

08119191
I'(lge 8

dynamic data will all be restored. This includes output settinos, which may
have to be overridden in the next step. Do not start the image save process
just yet, as we may want to make a few more adjustments before we get
that going. The command to load the image would be:

1l!J\GE L OAll

5. At this pOint, the default channel setting have been loaded from the
individual config files, and then the last known system state was loaded with
the IMAGE load line. No other tasks are running yet, so none of these
values have any affect on system inputs or outputs. We have a last chance
to force anything here before all of the automatic processes get going. The
most likely thing is to force all outputs off to insure that they are not
inadvertently activated when the driver task starts execution. So, a line like

Gould be used. This forces all outputs off in their memory image, and this is
what the I/O device will see when it starts manipulating the outputs in real
time.

Any other forced conditions could also be done here, such as forcing any
channels into local or remote status, disabling any channels, or any other
special tricks. Be sure to clearly comment each line so that the next guy will
have some idea what is going on.

6. Each task can now be started, one after another, with some number of
TASK command lines. These lines set the default priority and delay ticks,
and then start the task. The exact order does usually matter, so simply go in
numerical order. Remember that task 0 is already running (and is reading
this STARTO file). so it need not be re-started. A typical sequence could be:

Task 1 delay 4
Task 'I start
t~sk Util delay 6

tQsk utit start

task. scan start

task drive,· delay 30
task driver $cUTt
task sec start

; conm port task

;background t~sker

i alarm scanner
; Metrabus Driver

; timer processor

Note that the tasks are referred to by their name, rather than their number.
It is BAD PRACTICE to USe numbers to refer to RTUs or TASKS because it is
easy to mess things up if the RTU or TASK order is changed. Starting with
the 03/03/91 version, selection of an RTU by number is no longer allowed.
The RTU name must always be used. Tasks, however, can still be reference
by number or name. The name of the comm tasks are just a number
anyway, such as 1 or 2 for task 1 (typical radio) or task 2 (typical phone).
The UTll, CALC, SEC, SCAN, or DRIVER tasks should always be referenced
using these names.

After this completes, all tasks will be set up to run and will participate in the

TOTAl, ENGINEERING SERVICES TEAM
8]UlSCADA Svstlfm DQcumeotatioa

08/19/91
Pme it

multi-tasker switching immediately. At this point, the system is in full
operation.

7. Task 0 can now complete its startup by placing the local user in any state
desired. This is normally at either the main system menu, Of at a user
programmable menu. If nothing else is done, then the user is left at the
basic system command prompt.

8. Other RTU type tasks (i.e. those with comrn ports, the Util task, and the
CALC Task) also startup in much the same way as Task 0 in that they look
for a STARTx.RTU file. Their needs are much less because they do not have
to do all of the system startup procedures described above. They need only
take care of their own needs, which is usually limited to setting the comm
media (phone or radio), possibly setting the comm port number, baud rates,
and other task specific parameters. Initial comm configuration command can
also be done with the HAYES and PRC command lines that will configure a
modem or PRC.

START FILE LOCATIONS

Only STARTO needs to be in a DOS file, while all others can be in either DOS
files of the procedure library. STARTO needs to be in a separate file because at the
time it is needed, no library could have been loaded yet. It is possible to put the
bulk of the STARTO file in the library with the following simple STARTO file:

; SiVlllle smaH STAlHO DOS fi In
library ;ood $$.\10
read $tartup

With this trick, the smail STARTO file will load the main system library
indicated by $S.lIB. If the system name is EI258, then the library file will be
EI258.lIB. This file would contain most of the procedures necessary for system
operation, including one called STARTUP. This procedure will contain the
remainder of the Task 0 Startup sequence that would otherwise be located in the
STARTO. The advantage of this is that all startO files look the same because they
do not reference any specific location. the $$ does this for us at run time. This
lets all of the procedures related to a location reside in one library file, which is
easier to manage than lots of little files. The library also provides much faster
execution because DOS is not used for procedure processing.

The only disadvantage of this is that the STARTO file is fairly large, and it
takes up space in the library buffer. For a small RTU, this is usually not a problem.
However, a larger RTU or a HOST that has many procedures and Menu setups
stored in the Library may need the space. Also, the STARTO file can only be
processed once at system startup, so there is little to gain by having it readily
available in the library.

Tasks other tllan Task 0 may be restarted from time to time, so it is a good
idea to put their start files in the Library. This way, the start and bye files for each
task can be grouped in the file, making for much easier procedure maintenance
than when each procedure gets its own file.

TOTAL ENGINEERING SERVICES TEAM
IjTUI:iCIjDA System PocumeallUiou

081/9191
Pil.lJfJ 1 0

NOTE: Some older program versions (before 08/91) had a bug that
prevented proper location of STARTx files whell they are ill the library. III these
cases, tile STARTt Blld START2 files must also be reBI DOS files Blld not library
procedures.

CHANNEL SETUPS

Each 110 channel in the RTU system has many settings that control its action
within the system. in it very likely that most channels will have slightly different
settings from the others, although a group of channels often have similar settings.
For example, all of the status input channels may often be specified as alarm type
channels, while only some of the analogs usually generate alarms. Incorrectly
setting a channel's alarm or callout settings will prevent the system from reacting
in the desired manner.

All channel setups can be easily done using the CONFIG command or main
menu pick. The configuration information for each logical RTU's channels are
stored to disk with the SAVE command, and each RTU gets its own file. This
simplifies movement of RTU contig data from one system to another, but requires
that the operator keep track of which RTUs have had changes so that the proper
SAVE command will be executed. It is possible to directly edit the config file
because It is stored in plain text as complex RTU command lines. These lines are
normally processed during system startup, but can be processed at other times if
required. The file name is the same as the RTU name, with a file type of ".RTU".
This is the same file type as a normal RTU command file because the RTU confrg
file is simply a special form of a command file. It contains valid commands that are
fairly complex and would be awkward to enter by hand. although this is possible.
The format of the command lines is complicated because it represents the three
level channel definition used by the system. So. each channel may have up to 3
lines of definition associated with it. Again, it is rarely necessary to directly edit
this file, because the config screen makes channel setup much easier.

It is a good idea to place some sort of time delay on each channel that will
defer its alarm actions for the specified number of seconds. Even a delay of 1 or 2
seconds can be used to eliminate many talse alarms. This is because it is not
uncommon to have momentary conditions that appear to be alarms but are actually
caused by some otherwise harmless activity. One example is the manual reset of a
control panel which often activates circuits that indicate failure as part of the reset
process. IF an alarm is being detected by the voltage to an alarm light, then
pressing the lamp Test button for a few seconds would incorrectly signal the RTU
that an alarm had occurred.

Other points may require fairly lang delays to prevent false alarms. This is
the case with pressure and temperature type inputs that may have momentary high
or low conditions in the course of normal activity. A pipeline pressure may rise or
fall as a result of actions at another facility, and it may take a minute or so for the
pressure to stabilize after the abrupt change. Battery voltages may dip fairly low in
the middle of a cold night, so a delay of several hours may be needed there to
provide a 1110re accurate alarm condition.

Obviously, setting these delays requires some knowledge of the process
being monitored. The delays can be easily changed at the RTU, or they can be
changed at the HOST location and sent down to the RTU over the comm line. So,

TOTAL ENGINEERING SERVICES TEAM
8IJJL§i£d3QA Sv.s:tcm D"<zwvont1l((Qa

08119191
PallO 11

always implement some sort of delay at system installation and fine tune it later
after the system has had time to perform under actual conditions.

ALARM DEADBANDS

The dead band feature of all value derivative channels is a great feature that
will assist in eliminating many repeated alarms from a channel hovering near its
setpoint. The deadband applies to both the high and low setting, and will
determine the channel value that will allow a return to normal after an alarm
sequence. For example, a battery monitor with a low setpoint of 1 1 volts and a
deadband of 1.5 volts will go into low alarm at exactly 11 volts, but will remain in
alarm until the voltage rises above 12.5 (11 + 1.5). So, as the battery hangs
around 11 volts, say going from 11 to 11.2 , back down to 10.9, back up to 11.3,
and so on, it will not generate a fresh alarm each time it passes through 11 volts.

Deadbands, like alarm delays, may have to be estimated during installation
and fine tuned after some period of service. They should be present on every value
type channel that is set up as an alarm channel.

CALL ON ALARM AND RESET

This setting is present for each channel to help control communications
costs for systems with Cellular Phones, toll calls, or limited power supplies. The
cost of the call (in dollars and electrical power) must be assessed in relation to
each point. If communications are basically free, then set each channel to call on
both alarm ahd reset. This will eliminate any confusion or out-of-sync problems
between the RTLJ and HOST. However, if calls are expensive, then some
determination must be made as to which points should be allowed to generate
calls.

This is not as difficult as it could be because most systems have alarms that
do not occur very often, so having every alarm point generate calls is normally not
a problem, Unless there is some reason to do otherwise, set all alarm points to call
on alarm as weil as reset. If a point becomes a problem, it can always be changed
later. This is better than missing alarms.

CHANNEL NAMES, UNITS, AND ALARM PHRASES

These items are the text description assigned to each individual point, either
to describe the point itselt or its current status. The text is arbitrary, and should be
selected to suit the user and the installation requirements. Often, the uSe of
abbreviations helps reduce screen clutter and makes the system easier to use_
Also, the use of lower case for normal phrases and UPPER CASE for alarm phrases
may make for a more pleasing display. In no case should everything be typed in
upper case, as it makes the screens far to cluttered and makes it more difficult to
locate points that are in alarm.

For status type channels, the normal and abnormal phrases should make
sense for the channel descrilltion. For example, the text definition for a platform
shutin alarm could be "Well #1 Status", or it could be "Well #1 Alarm". These are

TOTAL ENGINEERING SERVICES TEAM
81UVSCdDASY~2.~D~a~KU~m~«~n~Urut~ro~n ________________________________ ___

08119191
EfWe 12.

,System Servo lIod ProQrommiflD Guide

slightly different phrases, and would require different styles of alarm phrases, With
this "Status" description, the alarm status phrases could be "Online" and
"SHUTIN", With the" Alarm" description, the phrases would be "Off" and
"ACTIVE", A poor choice would be "OWand "On", The user could be confused
by "Off", which means that the alarm is off, by thinking it means the well is off.
Do not confuse the process status with the alarm status, Most applications seem
to work better with a process status, and let the phrases indicate the status, It is
mora confusing to name a point after the alarm status, and let the phrases raflect
the alarm state rather than the process state,

The choice is up to the user, but a good tip is to be consistent at each
location, and also within each company. If you use "Separator Status" for one
point, use "Heater Status" for a similar point. It may seem like a small point now,
but it really helps the daily operators who are not very familiar with SCADA
systems if these text descriptions and phrases use the same language they do.

The Units for Value type channels can follow the same guides as the text
descriptions, If the operators use MMCF to indicate Millions of Cubic Feet per day,
then do not put "MIL/DAY" In the units field. Most industries have very set ways
of indicating values, and these same units should be used on the SCADA system.
The use of upper and lower case can be a help here, as "Bbls" is more common
than "BBlS" to describe barrels. Again, the exact format Is up to the user, but be
consistent within the same system and company,

OUTPUTS AND TIMER CHANNELS

The main use of timer channels at an RTU is to pulse output channels,
Timers are also used for a few other functions, but output pulsing Is the main
event, So, it makes a lot of sense to set up the timers in the EXACT same order as
tl,e output channels, even if it means putting in a few unnecessary timers that will
never be used. Timer channels are free, so it is hard to waste them. If possible,
layout the outputs such that they are grouped is a logical manner, and that the
ones needing timers are at the top of the output list, This way, a shorter list of
timers can be used that will line up one-far-one with the output channels,

If you have to put in a few dummy timers that will not actually be linked
with an output, you can always use them for other timer functions like call-back or
hurricane timers, Name the timer channels so that they relate to the output
channel. For example, "ESD Pulse Timer" is a lot better than "Output 1 Timer".

AUTQMATIC ACTION PROCEQUBES AND FILES

CONNECT FILES

Each comm task starts communications when the carrier detect (COl line on
the serial port becomes active. TI1e task goes from an offline (standby) to a online
(active) state and expects commands to come into the serial port. It will send
result messages out of the serial port. While online, numerous error checking and
timeout procedures go into effect to prevent the task from getting hung up with
screwy comm links,

TOTAL ENGINEERING SERVICES TEAM 08119191
BTUlSCADA~.Dokwnf1ntf)tion __________________ .J.e.u'lJllI{.JIt~I3.

When the task first goes online, it will look for a special file called
CONNECTx.RTU, where the x is replaced with the task number. So, task 1 will
look for CONNECT1 .RTU. These files were important In early versions of the
software (circa 1988) because they controlled the communications session. After
the Introduction of the LINK system, the CONNECT files were mostly obsolete.
However. they were retained for cases where some sort of speCial processing is
needed at the start of a comm session. they are no longer used to control the
actual data transfers. but are still used for any hardware control necessary to
manipulate the comm equipment. For example, if it were necessary to activate an
output when the comm session started, a file like:

; c~u starting, activate aUK battery~
calc 05 Q on

could be used. A corresponding output turnoff command would probably be
used in the BYE file described below.

LINK FILES

The LINK files are processed by a task whenever it is originating a call dut1 to
an active Link. Incoming calls do not use the Link system at all. The purpose ot
this file is to allow special processing when a task performs a callout. Normally,
the task will use it's HOST or RTU status setting for the current link in order to
determine what to do when a callout makes a connection. The RTU status causes
the task to process a file called DQWNLOAD.RTU, which normally results in the
HTU sending channel data to the answering unit. A HOST status causes the task
to send a message to the other computer telling it to process its DOWNLOAD.RTU
file, resulting in a data transfer FROM the other unit. So, RTUs normally send data
on callout, while HOSTS request data on a callout.

There are times when this is not the desired action, such as when a HOST
calls another HOST. In these cases, the active link for the calling HOST will need a
control file telling it what to do when it connects on a callout. That action may be
to send data, receive data, or both, depending on the situation. If a LINKx file is
present, it will be processed. If it is not there, the RTU or HOST setting will
control the action.

Note that the x in the LlNKx.RTU file name refers to the Link number. not
the task number as was done in the other file types. So, each link (representing a
different phone number and probably a different unit) can have its own unique
special process that will occur when a callout is complete.

DOWNLOAD FILES

The standard command file that will transfer data from a unit is called
DOWNLOAD.RTU. This file will be unique to each location. although all are very
similar, The basic: steps are as follows:

1. Set ONLINE ON to prevent processing of the file if the comm link is lost.
The ONLINE flag remains active until turned off or until the command file

TOTAl, ENGINE£RING SERVICES TEAM
flTUI$.C.AQA System QQCIJf'(lllntlltiQn

08/1919/
Ega€ 14

completes execution.

2. Send channel data using SCAN lines for all channel types to be sent to the
other unit. The last line should contain the special @ sign to indicate that it
is the last line. This will cause the other unit to timestamp the data with its
local time. It also causes a current link at either end to be reset.

3. ACK and RESET the local channels so that their alarm state will move from
NEW to IN-ALARM, or from IN-ALARM to NORMAL. This is important in
order to allow a point to clear and then be able to re-alarm when needed.

4. At this point, the SET ONLINE can be turned off because a loss of comm will
not cause a problem. We have already sent the data and cleared the local
alarms. Any new alarms should be active at the other end by now.

5. Terminate the communications by doing a BYE command. This is normally
at the end of the OOWNLOAD.RTU file.

A typical file may look like this:

; Typical Download file for a small RTU
set onllne on
scan 51:816 R 01:.08 R a1;:a8 E

scan q1:q2 E q1:q2 T 01:04 E 01:04 T
scan m1:m2 E v1 :v8 Eli)

reSf.t

.ck
set ont ine off
bye i end of download file

BYE FILES

Each comm task will look for and process a BYEx.RTU file each time a
communications session ends. This is triggered by the loss of carrier detect (CO) on
the serial port. This file is used to do whatever is necessary to disconnect the
comm link and re-program the modem or PRC to insure it is properly configured.
This file also runs after long periods of no communications as determined by the
SET COMM command. This is normally set to several hours so that any comm
inactivity that resulted from an improperly configured modem will be cleared
automatically.

AGENDA SETUP FILES

The program's agenda system is a special background function that watches
the clock and issues commands to various tasks at specified times of day. This is
used to schedule special events such as production logs, RTU polls, or other daily
routine tasks. The AGENDA command can be used from the command prompt for
manual entry, but this is awkward and rarely used except for quick tests. The
correct way to set up the agenda is to place all of the desired agenda commands in
a separate file, surprisingly called AGENDA.RTU. This file, which should not be
placed in the library, contains the list of things to do. It is normally read during

TOTAL ENGINEERING SERVICES TEAM
{lTU/SCAM System Documentation

08/19/91
PaQfl 15

SYStem Setup IImt Programming Guide

initial startup, but can be edited and re-read at any time. Placing all of the
commands in a single file centralizes the list and makes management easier.

Each agenda line consists of the keyword AGENDA, a task to receive the
message, a time of day, and a command message. This information is stored in a
memory list and is sent to the specified task at the appropriate time. It is best to
make the agenda commands very short, and to place complex lists of commands in
separate command flies or library procedures. This way, the agenda is simple,
while the intended function may be very complex.

For example. many RTUs perform some sort of daily production log
procedure early in the morning. This consists of saving some previous day values,
clearing the counters and totalizers, and possibly doing a little math, All of this
may take 20 program lines to complete the function. All 20 lines could be put
directly in the agenda. but it is easier to place the lines in a file or procedure called
DAILY. and simply tell the agenda to READ DAILY. This way. the agenda is not
cluttered and maintenance of the daily function is centralized in one command file.

Using this scheme, the agenda activity should consist of a list of "one liners"
such as READ DAILY, LINK ALL RESET, POLL ALL NOW, or other functions that
can be done in a single line. Anything more should be placed in a separate file.

The agenda is usually loaded with a GOSUB AGENDA line in the STARTO
rile, which tells the program to branch to a file or procedure called AGENDA. After
file processing is complete. the startup will continue with the next line. The
agenda requires several control lines to clear and then activate it whenever a new
list is loaded. So, the AGENDA file will normally staft with an AGENDA CLEAR
command. followed by the list of agenda commands. and ending with an AGENDA
ON line. This makes the agenda file a self contained unit. At any time, the
operator could edit the AGENDA file. and then issue a READ AGENDA command to
have the system clear. reload. and reactivate the agenda list.

A typical AGENDA.RTU file is as follows:

; Typicni Agendo file
agenda clear ; r~ve any existing agenda activity
agenda,utit.02:00:00,link all r&try; retry all failed links
ugendafutit~06!OO:OO.Read Dally
0gtndu,uttt.07:00:00 t poll ell now
ageMa,1.23:00:00,bYu ; Make SUfe c00l1 is. reset e-very night
agenda on ; start the background process

Note that all agenda entries must be in time of day order, from early to late.
An out of sequence entry will be executed at the wrong time.

After loading, simply enter the command AGENDA to have the system dump
the list for your review and approval. If anything is wrong, edit the file and check
for misspelled words or an out of sequence entry.

TOTAL ENGINEERING SERVICES TtAM
RTUI{£r;AIUL$wt€{n l2oQutr!I'nrlltiqa

08119191
Page JJi

MENU SETUPS

Menu files are different from normal RTU command files, but they are built
using the same editor and common sense rules as the other files discussed here.
The philosophy behind the menu structure will have to vary among systems
because each one Is unique. However, there are some common features we want
to see in all the menu systems on aU the RTUs.

The main decision to be made is now to generally divide the various menu
functions. For example, it may be possible to separate the menus into function
groups, or they may be separated by physical RTU location. In other words, we
could have menus that have titles like "Display Menu", "Shut-In Menu", and "Utility
Menu". These menus would have similar features for several RTUs on a single
menu. An alternate method would be to use separate menus for each location,
with a similar list of functions on each one. These menus would be titled 'IRTU 1
Menu", "RTU 2 Menu", etc. The choice is up to the operator, but be consistent at
different locations for the same owner.

The menus shOuld be "nested", where a main menu "calls" a lower lev(ll
one, and the lower one "returns" back to the one that called it. This is done with
the MENU GOSUB and MENU RETURN commands. Older versions of the program
could only load a new menu with no way to go back to a previous menu without
coding in the exact name of the menu file. Now, a menu can be loaded under an
existing one, and the lower one can go back to the previous menu without knowing
anything about the menu. Menus can be nested up to 8 deep, which is more than
adequate for even the largest Host system.

The Menu titles should be clear, and not wordy. The title "VR-256 Main
Menu" is fine, while "TMC VR·256-A MAIN RTU COMPUTER MENU" is way to
long. Also, the use of Upper case for emphasis is highly recommended. TO MANY
UPPER CASE LETTERS LOOKS BAD AND IS HARDER TO READ. To Many UPPER
Case letters look BAD and are HARD to read. See what I mean?

The first entry on every menu should be "Return to Previous Menu". This
provides a consistent way for a user to navigate the menu structure. The top entry
always takes him back one step. Avoid menu entries that allow the user to jump
sideways across the menu structure,

SHIFTED FUNCTION KEYS

The 03/91 program version introduced a user programmable function key
feature tllat allows each location to have 9 "hot keys" that are accessed with the
Shifted Function Keys. Shift-F7 is already used by the program for "Display First",
but the other keys are open for grabs. Unless these keys are needed for a special
purpose, the following list is a good use for these keys:

SFl Turn on Comm Watches (1, 2 or both)
SF2 Turn off the Comm Watches
SF8 Re~Load the Procedure Library
SF9 Go directly to USER menu
SF10 Put up a short help file.

TOTAL ENGINEERING SERVICES TEAM
RTUISr;;.ADA ~tem DocumeotlltiOfi

08119191
PMf! tZ

These functions can be placed in the standard library file and easily used on
each rtu. The function keys can be used for other purposes, but use this list unless
there is a good reason not to.

EXAMPLE PROCEDURE LIBRARY

The following example was taken from an actual installation, with some
modifications just for illustration purposes. It is provided here in full form, and was
from a Host Computer that monitored information from 3 RTU locations. This fila
can be used as 11 guide when setting up other systems.

; library for "",xV we 458 host AM!. 05112191

PROC ShvtO ; T&&K 0 a~k it OK to per form timer pulse action

pause,Do you want to continue? ,n, 120
force 1 read shut1 $1 $2
force Clear 0

PROC Shut,

s.luep 1
seln $1

; Task 1 to pulse an output tor any RTU.

; f'nram 1 is Rtu(2 is rimar. 3 is !HH::or)(ts

; W&it a ~ec for TaSK 0 screen to get cleared

msg Dhl ing RTU $I~

dial

tHl j t 30 conn

if comstat(1)

ms~ RHI $~ is onl ine now~
else

msg RTlJ did not CQMect. Retry later.

eMit
t:ut ont 1 ne on

msg Rtu $~ is onl in€? Sending Coomand to pulse solenoid

BLOCK calc $2.$1
loo.g Coomand Soot. leHu should De Putsing Sotenoid now.

nmg Uaiting 10 seconds for download

sle"p ;)
~~9 W~itin9 a bft more •.....
sLeep 5
msg OQttinij Oownload
block read downlQad

force- Q disp 51 : Putl lOCAL user into d\splay

PROC Chang~O Ask if OK to send V<ollues to an IUt)

els

Echo. rhix wi l t Cat t $-1 and upload the An.alog setpQlnts and Value Ci)annc-Ls

CUI'8or 1,8
pause.Oo you want to contfnue1.n.120
force 1 rC'~d cttartg(!1 $1

TOTAL ENGINEERING SERVICES TEAM
BI!Jl!iC/! DA System PocumeaWtioa

08119191
Pf)1l111Jl

http:pause.Oo

l;l'i§tllJ» SetuparUI Proa({Jlnming GU/rill

PROC ,e311 M2 ; Me/ill

'EC'·311-AJ RHi SHUTlN MENU 20 • 1

IR£luRN TO PREVIOUS MENU
menu retUl'll

IPlatfQrm fSD
MSG rh i s wi II caLise a pl atform ESP

read shutO t1
IPlatform Tot.l S/O

msg This will a Totai SID
read shutO ec311 t2

IShut tn Ali
fD8g This witl sl'IUtin aU the wells

rt'ad soutO ee311 t3: t8

:Snut Tn Wei t
msg This will shutin well
read shuti) ec311 t 3

IShut in Yetl
This wilt shutin well A-2

read shutO ec3i tit

IShut In Well A'3

ffiSg This wilt cause well A-3 to shutin

read $hutO ec311 t5
ISh"t in Well A-4

rosg This will cause wc\l A"4 to shutin
read shu to ec311 t6

jShut in Well
11)$9 This witt c.'lL/Sit weU to s.hutin

read shutO t7
IShut in Well A"6

msg lh!s will CQuse well A"6 to shutin
read snutO t8

IShut in Platform ESO
1tIS.9 This will cause i) platform HO

read shutO ec311 t1
Iset hurricane Timet"

msg Htis wHl start the jwrricane tImer

fead hurcO

PROC WC433AM
'YC-433-A OPtIONS MENU
IRETURH TO PREVIOUS MENU

menu Ctl-turn
IS.nd Setpe'nt. to vc433

msg Thfs wi II send the set points tn your cOfIPJter

READ CHANGED WC433A
IShu, In VC-433 A

msg This II CilUSC a wel \ panel shutdown

rend shutO wc433a t1
Ilhut In Well A-I

msg Thi$ cause weLt A 1 to shutin
SIHitO \1c433a t2

IRe.et Well A·1

I1S9 this will j"eset well A-l

TOTAL ENGINEERING SERVICES TEAM
Wise!) VA Systl!!l1 OOCUlpent{!tiQn

08119191
PallfJ..lfl

read shutO wc4l3a t3
\Shvt~ln Well A~2

msg Th,» wi II cause wetl A~2 to shut in
read shUtO wc433& tIt

IReset Well A'2

msg This wilt reset well A~2

read shutO wc433a tS

I See A lnl'm Log

RI:AD alug. wc433a

p~oc WC457BH

we-,57-s OPTIO~S M,~U - 30 - 1

IRETUR~ TO PREVIOUS MEkU
tI1I2ruJ return

ISend Set",,'nt. to WC-457a
msg This wi l t send the sctpo\nu in YOUr' c~ter

read cnangeO wc457b
IShut In we-"S7 a

msg ThIS will cause a plntform ESO at ~C457b
read soutO wc457b ti

IShut-ln WELL a-I
ms.g fhis witl cal,Jse well B-1 to shutit'l
read shutO wc457b tZ

IRe.e, Well 8-'
nwg This witt reset welt a-1
re.d shutO we457b t3

IShut-In Well a-2
msg This will cauue well 8~2 to shutin
read soutO we457b t4

IReset Well a-2
msg This will icset »ett B~2
read shutO »c457h t5

Is •• Alarm LOG

SEAS olog wc45Th

PRQC YC4SIlM

. yc· 45a·A OPrlONS MENLi • 30 • 1

IRe-turn. to Previous Menu
menu return

!nothing on This. Menu yet

menu retlJI'n

PROt YC459/>\
·YC·459 OPTIONS MENU· 30 • ,
IReturn to P,evlous Meny

menu return

IScnd S.tpo'nt. to WC-459
MSt! Thls wi Ii send the setpolnts to the- RTU

read changeD wc4S9
I Shut In C-459 ESO

TOTAL ENGINEERING SERVICES TEAM
BIJJLSCAQtl System QQr:umenlDtion~~ .. ____ ~

08119191
flwe 25

fli$g This will cause u platform ESt)

read shutO wc459 t1

IShut~!n ~.ll CJ-l
msg ThlS will Cll{,lS¢" well CJ~' to shvtin
r~ad soutO Wc4S9 t2

IReset Well CJ-l
msg This will. res.et well CJ"l

reAd shutO wc4S9 U

TOTAL ENGINEERING SEfiV/CES TEAM
Ii TJ)ISr;.A M ,futJJJ:J:LQggumeatlltion

08119191
~_e""",J11L2Jj,

